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Abstract 
In this work a novel automated method. combining 

time-frequency analysis and expert 3 knowledge, for the 
classijicarion of atrial tachyarrhythmias is presented. It is 
based on the analysis of small ECG segments and their 
class@ication into three categories of cardiac rhythm: (a) 
atrial fibrillation, (b) atrial flutter and (c) normal sinus 
rhythms. Time frequency analysis is used to calculate rhe 
power spectrum densig for each segmenr. Several 
spectral characteristics are extracted from the power 
spectrum density, representing the energy distriburion on 
the time-frequency plane. These characteristics are used 
as input in an artijkial neural network, which classifies 
each ECG segment into one of the three categories. The 
method is validated using the MJT-BIH arrhythmia 
database and the obtained average sensitivity and 
specifcity ure 93.4% and 96.5%, respectively. 

1. Introduction 
The automated diagnosis of atrial tachyarrhythmias is 

a vital problem in clinical cardiology, especially when it 
is performed in real time. Several researchers have 
addressed the problem of automatic detection and 
classification of atrial tachyarrhythmias [l-31. However, 
most of the approaches proposed use the entire ECG 
signal extracting several features from it, such as the P 
wave, which is an extremely time-consuming process and 
sometimes difficult due to the presence of noise. In 
addition the identification of normal sinus rhythm (NSR), 
atrial fibrillation (AFIB) and atrial flutter (AFL) based on 
Fourier analysis is not effective since ventricular activity 
overlaps with atrial activity in the frequency domain. The 
main difference between AFIB, AFL and NSR i s  the 
atrial activation of the heart. 

This work focuses on the study of the ECG segments 
where the atrial activation of the heart is more distinctive. 

An automated method for the classification of atrial 
tachyarrhythmias, is proposed based on time-frequency 
analysis. The approach is based on the analysis of small 
ECG segments and their classification into three 
categories of cardiac rhythms: (a) atrial fibrillation, (b) 
atrial flutter and (c) norma1 sinus rhythm. Time-frequency 
analysis is used to calculate the power spectrum density 
(PSD) for each segment. Several spectral characteristics 
are extracted from the PSD, representing the energy 
distribution on the time-frequency plane in certain areas 
of interest. These features are used as input in an artificial 
neural network (ANN), which classifies each ECG 
segment into one of the three categories, Recordings from 
the MIT-BIH arrhythmia database [4] and the MIT-BIH 
atrial fibrillation database [ 5 ]  are used for training and 
evaluation of the method. 

2. Methods 
The proposed method consists of three steps: (a) 

preprocessing, which includes QRS detection and ECG 
segment creation; (b) time-frequency analysis and feature 
extraction and IC) classification of atrial tachyarrhythmias 
based on artificial neuraI network (ANN). 

2.1. Dataset 
The dataset used for the method includes 100.000 

beats, seIected from AFlB and AFL episodes and NSR 
annotated beats. The type of beats of the dataset are 
shown in Table 2: 59.500 normal annotated beats were 
randomly selected from the MIT-BIH arrhythmia 
database, 40.000 beats belonging to AFIB episodes from 
the MIT-BIH arrhythmia database and the MIT-BIH atria1 
fibrillation database and 500 beats belonging to AFL 
episodes from the MIT-BIH arrhythmia database. The 
number of beats belonging to the An category is much 
smaller due to the small number of AFL episodes existing 
in the database. 
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Table 1. Dataset: number of beats for each type of cardiac 
rhythm. 

Cardiac rhvthm N 

Normal 59,500 

Atrial Fibrillation 40,000 

Atrial Flutter 500 
~~ 

Total 
~~ 

100,000 

2.2. Preprocessing 
Initially, the QRS complexes are detected and the start 

and end points for each QRS complex are determined. A 
modification of the algorithm proposed by Tompkins 161 
is used for QRS detection. The algorithm includes two 
stages: (a) preprocessing of the ECG signal and (b) 
decision if a QRS complex is detected. During the 
preprocessing digital filters are used for the removal of 
the electromagnetic noise and the correction of the 
baseline wandering. Also features of the ECG that are not 
necessary for QRS detection, such as P and T waves, are 
removed. Substantially, a bandpass filter (combining a 
lowpass and a hightpass filter) with cut-off frequencies 5 
and 17 Hz is applied, since in this range of frequencies 
the QRS energy is concentrated. After the filtering a 
differentiator and an integrator are applied. In the 
decision stage the candidate R peaks are extracted and 
rules are used to determine if a candidate peak is a QRS 
complex or not 161. 

Other features, which are extracted, are the QRS start 
and end points. For this purpose a modification of the 
method described by Daskalov [7] is used. The method is 
carried out in two stages: (a) identification of two search 
intervals, one for the detection of the QRS start and the 
second for the detection of the QRS end and . (b) 
determination of the QRS limits. In the first stage a 
segment of the isoelectric line is detected, in the time 
interval [ a  - 120ms,a], where a is the lower amplitude of 
QRS complex before the R wave. The segment is found if 
eight successive differences between neighbouring 
samples are smaller than a predefined value c and the 
difference between the initial and final sample are also 
smaller than c : 

' 

where m Q R S  and minQRS are the maximum and the 
minimum amplitude of the QRS complex, respectively. 
The start point of the first search interval is the first point 
of the isoelectric line segment. The end point of the first 

search interval is determined if a peak or a slope, what 
appears first, is detected. A peak is detected if, for a given 
sample Si, the differences Si -SI and Si -S, have the 
same sign and are larger than c . S, is the point 10ms 
before Si and S, is the point lOms after the Sf. A slope 
is detected if eight successive differences between points 
with 5 ms intervals have the same sign and are smaller 
than 1.5 c . The midpoint of the slope or the peak is 
considered as the end point of the first search interval. 
Using the same method with different c ,  the second 
search interval (where the QRS end will be detected) is 
determined. The start of the QRS complex is detected in 
the first search interval as follows: for each sample Si 

belonging to the first search interval, the Sl.?iS, angle i s  
calculated. The start of the QRS complex is considered as 
the point, which corresponds to the minimum angle. 

The QRS start and end points are used to define the 
ECG segments, which are the ECG signals between two 
consecutive QRS complexes, starting at the end point of 
the current QRS complex and ending at the start point of 
the next QRS complex (Fig. 1). 

Figure 1. ECG segment. 

2.3. Time-frequency analysis and feature 
extraction 

The ECG segments are processed using time- 
frequency analysis. Smoothed Pseudo Wigner-Ville 
distribution (SPWVD) is used: 

where x is the signal, x' is its complex conjugate, t is 
the time, h ( . )  is a frequency smoothing window and 

g(.) is a time smoothing window. Both, time and 
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frequency smoothing windows were set as Hamming 63- 
point length windows. The power spectrum density 
(PSD), which represents the fractional energy of the 
signal in time t and frequency f , is computed (Fig. la). 
A grid of 40 squares is defined, selecting 5 equally spaced 
points for time and 8 equally spaced points on the 
frequency axis (fig lb), The energy for each defined 
square of the grid is computed and the result is a vector of 
energies of dimension 40. This vector is the input to the 
neural network. 

Figure 2. (a) PSD for an ECG segment; (b) 40 square 
grid. 

2.4. Atrial tachyarrhythmias classification 
Atrial tachyarrhythias classification is performed using 

a feed-forward back-propagation neural network. The 
training and testing sets are shown in Table 2. Several 
neural network architectures have been tried and the one 
that performs better has been chosen: 40 inputs, 1 hidden 
layer with 20 neurons and 3 outputs, being real numbers 
between 0 and 1. The classified category is defined with 
the maximum output. The training of the neural network 
ends when the square error is less than 0.01 or the 
training epochs are more than 2000. 

Table 2. Training and test set. 

# of beats in # of beats in 
Cardiac rhythm the training set the test set 

Normal 
~~ 

1,000 58,500 

Atrial Fibrillation 1,000 39,000 

Atrial Flutter 100 400 

Total 2,100 97,900 

3. Results 
The proposed method is evaluated using the above 

described dataset. The results are shown in Tables 3 and 
4. In Table 3 each etement xij represents the number of 

beats beIonging to category j and classified in category 
i . The sensitivity, specificity and positive predictive 
value are given in Table 4. 

Table 3. Results of the proposed method. 

Atrial Atrial 
Fibrillation Flutter Normal 

y Normal 55,378 1,924 9 
z-2 

2: 
2,607 36,479 23 

515 597 368 

8 2 Atrial 
3 % Fibrillation 

E Atrid 
Flutter 

Total 58,500 39,000 400 

Table 4. Sensitivity, specificity and positive predictive 
valus results. 

Positive 
predictive 
value % 

Sensitivity Specificity 
% 5% Cardiac rhythm 

Normal 94.66 95.09 96.63 

Atrial 
FibrilIation 93.54 95.53 93.28 

Atrial Flutter 92.00 98.86 24.86 

The accuracy of the proposed method is 94.20%. 

4. Discussion and conclusions 
A method for automated classification of atrial 

tachyarrhythmias in ECGs is proposed, combining time- 
frequency analysis and A N N s  The results indicate high 
performance in atrial flutter and atrial fibrillation beat 
classification. Results for sensitivity and specificity are 
high for all categories (92% - 99%). Positive predictive 
results are high for NSR and AFIB categories (96% and 
93% respectively) but not for AFL (24%). This is due to 
the small number of AFL beats (400), compared to the 
number of beats used for the other categories (58,500 for 
NSR and 39,000 for AFIB) in the dataset. 
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Table 5. Comparison with other methods proposed in the literature. 

Results 

9% % % 
Authors Method Database Arrhythmic Types Sensitivity Specificity Accuracy 

Yang et al. [ l]  

Christov et al. [2] 

heta et al. [3] 

this work 

Neural 
networks 

Rules 
flowchart 

Mind 
source 

separation 
and 

Fourier 
analysis 

Time- 
frequency 
analysis 

92 92.3 Atrial fibrillation 
Normal 

2363 beats 
Glasgow 

Royal Infirmary 

329 records Atrial 

Sofia Medical Hospital Normal 
(8 sec length) flutterlfibrillation 95.7 98.3 98.8 

30 records 
(6 sec length) 

HospitaI 
Clinic0 de Valencia 

Atrial flutter 
Atrial fibrillation 

Normal 
100 

Atrial flutter 94.66 95.09 

Normal 92.00 98.86 

100.000 beats 

and atrial fibrillation 
databases 

93.54 95.53 94.20 MTT-BIH arrhythmia Atrial fibfillation 

Table 5 summarizes the results of other methods 
- proposed in the literature. Some of the methods 

distinguish between only two categories (AFIB and SNR 
in [l], AFIBI AFL and S N R  in [2j). The datasets used cl- 
31 are much smaller (300 - 6.000 beats approximately) 
than the dataset used for the evaluation of the proposed 
method (97.900 beats). The results compare well with all 
other methods. Some of the methods [2] extract and use 
several features from ECG, such as the P wave, which is 
an extremely time-consuming process and sometimes 
difficult due to the presence of noise, especially in 
tachyarrhytfimic cardiac episodes. This is avoided in our 
method, which makes our approach much faster. 

Acknowledgements 
This research was partially funded by the program 

"Heraklitos" of the Operational Program for Education 
and Initial Vocational Training of the Hellenic Ministry 
of Educationunder the 3rd Community Support 
Framework and the European Social Fund. 

References 
[ I ]  Yang TF, Devine B, Macfarlane PW. Artificial neural 

networks for the diagnosis of atrial fibrillation. Med. & 
Bio. Eng. & Comput. 1994;32:615-9. 

[2] Christov I, Bortolan G, Daskalov I. Sequentid analysis for 
automatic detection of atrial fibrillation and flutter. In: 
Murray A. Computers in Cardiology 2001. Piscataway: 

[3] Rieta JI, Millet-Roig J, Zmoso V, Castells F, Sanchez C, 
Garcia-Civera R, Morel1 S. Atrial fibrillation, atrial flutter 
and normal sinus rhythm discrimination by means of blind 
source separation and spectral parameters extraction. In: 
Murray A. Computers in Cardiology 2002. Piscataway: 

[4] MIT-BIH Arrhythmia Database CD-ROM. Third Edition, 
1997, Hanard-MIT Division of Health Sciences and 
Technology. 

[SI MIT-BIH Atrial Fibrillation Database CD-ROM, Third 
Edition, 1997, Harvard-MlT Division of Health Sciences 

[6] Pan J, Thompkins WJ. A real-time QRS detection 
algorithm. IEEE Trans. Biom. Eng. 1985;32:230-6. 

171 Daskalov IK, Christov II. Electrocardiogram signal 
preprocessing for automatic detection of QRS boundaries. 
Med.'Eng. & Phys 1999;21:37-44. 

IEEE, 2001 :293-296. 

IEEE, 2002:25-28. 

. and Technology. 

Address for correspondence. 

Dimitrios I. Fotiadis 
Unit of Medical Technology and Intelligent Information 
Systems, Dept. of Computer Science, University of Ioannina 
Campus, P.O. BOX 1 186, GR 45 1 10 Ioannina, Greece. 
fotiadts@cs.uoi.pr 

248 


